Info 2022.2 - UdeA - Posgrado

ESTA ES INFORMACIÓN PARA LAS PERSONAS MATRICULADAS EN EL CURSO REGULAR DE POSGRADO EN LA FACULTAD DE INGENIERÍA DE LA UNIVERSIDAD DE ANTIOQUIA - SEMESTRE 2022-2

Trabajando con los materiales del curso

01 - Jupyter notebooks y Google colab: video 13mins Explicamos brevemente cómo es el entorno de ejecución de código Python en la nube de Google que vamos a usar durante el curso

02 - Laboratorios y envío de soluciones: video 12mins Describimos cómo es el mecanismo de envío de soluciones y la plataforma de autocorrección de talleres.

Sesiones sincrónicas

Para acceder a las sesiones

ENLACE DE GOOGLE MEET https://meet.google.com/tun-cshc-idj

Calendario y fechas

Fechas límite para entregas

    18/sep: Laboratorios unidad 1 y 2
    16/oct: Laboratorios unidad 3
            Proyecto entrega 1
    30/oct: Laboratorios unidad 4
    20/nov: Laboratorios unidad 5
    11/dic: Proyecto informe final

Fechas oficiales facutlad de ingeniería

      19/ago:          Inicio de clases
      9/dic:           Finalizacion clases
      9/dic-14/dic:    Examenes finalies
      14/dic:          Fecha limite para el reporte de notas
      14/dic:          Terminación oficial del semestre

Evaluaciones

    20%     Laboratorios unidades 1,2,3
    20%     Laboratorios unidad 4
    20%     Laboratorios unidad 5
    40%     Proyecto 

Proyecto

Deberás de realizar un proyecto que aplique las técnicas del módulo 4 o del módulo 5 a un problema que escojas. Por ejemplo:

  • Relacionado con tu trabajo de tesis

  • Un challenge de www.kaggle.com (aunque ya haya pasado la competición)

  • Sobre algún dataset público

  • etc.

Te recomendamos que:

  • Verifiques que los datos están disponibles antes de escoger tu proyecto.

  • Estimes los requerimientos computacionales para generar los modelos que necesites. Reduce el alcance de tu proyecto si lo necesitas (menos datos, menos clases, etc.).

  • Realices una primera iteración cuanto antes. Es decir, que llegues a tener un primer modelo sencillo produciendo predicciones. Implementa en esta primera iteración estrictamente lo que necesites para tener un modelo. El objetivo es resolver la mayoría de los problemas técnicos que te puedan surgir para ya, después, enfocarte en todo lo que quieras hacer en las siguientes iteraciones (preprocesado de datos, otros modelos, etc.)

Entrega 1

Tendrás que entregar un documento (1-3 páginas máximo) con la siguiente estructura

  • Contexto de aplicación

  • Objetivo de machine learning (queremos predecir X, dada tal información)

  • Dataset: tipo de datos, tamaño (número de datos y tamaño en disco), distribución de las clases

  • Métricas de desempeño (de machine learning y negocio)

  • Referencias y resultados previos

Para la entrega crea un nuevo repositorio en http://github.com e incluye el informe. Para el resto de las entregas estructúralo según se indica más abajo.

Indica tu repositorio github rellenando ESTE FORMULARIO.

Para verificar las fechas de entrega se considerará el último commit antes de cada fecha. Es decir, si cualquier entregable, aparece únicamente en commits posteriores a cualquier fecha de entrega no se tendrá en cuenta.

Entrega 2

Para realizar esta entrega tienes que realizar TRES cosas:

  • Incluye en el repositorio github los notebooks con tu soluciòn, el informe de la primera entrega y el informe final y lo que consideres oportuno.

  • Crea un video de presentación y súbelo a http://youtube.com

  • Incluye en el README.md del repositorio, el enlace al video de youtube.

La entrega ha de constar de los siguientes elementos:

  • Notebooks reproducibles

    • Incluye los notebooks que consideres que implementen tu solución o las iteraciones que hiciste sobre la misma (distintas arquitecturas, etc.)

    • Los notebooks han de ser directamente reproducibles sobre Google Colab. CUALQUIER NOTEBOOK QUE PRODUZCA ERRORES AL EJECUTARSE SERÁ DESCARTADO DE TU ENTREGA

    • Organiza tus notebooks con un prejifo numérico para que estén ordenados, mira el ejemplo de estructura de tu carpeta de entrega más abajo

  • Informe

    • Redacta un informe ejecutivo e inclúyelo en la carpeta compartida en formato PDF. El informe no debería de ser muy largo (p.ej. entre 5 y 10 páginas), y ha de incluir:

      • Descripción de la estructura de los notebooks entregados

      • Descripción de tu solución (arquitectura, preprocesado, etc.)

      • Descripción de las iteraciones que hiciste

      • Descripción de los resultados.

    • El fichero con el informe se ha de llamar INFORME_PROYECTO.PDF. SI USAS OTRO NOMBRE O FORMATO LA ENTREGA NO SERÁ VÁLIDA

  • Video (súbelo a youtube)

    • Realiza un video de entre 5 y 10mins donde expliques tu entrega. P.ej.:

      • Describe y muestra brevemente los datos

      • Describe y muestra brevemente tu código

      • Muestra la pantalla con tus notebooks según los ejecutas

      • Muestre algunos de los resultados obtenidos

  • Datos

    • Incluye en tu informe cómo obtener y hacer disponibles tus datos a los procesos implementados en tus notebooks.

  • Modelos entrenados

    • El proceso de entrenamiento de los modelos ha de ser ejecutable desde los notebooks de tu entrega.

Estructura de ejemplo de la carpeta de entrega

    |
    +-  01 - exploración de datos.ipynb
    +-  02 - preprocesado.ipynb
    +-  03 - arquitectura de linea de base.ipynb
    +-  otros_notebooks
    +-  INFORME_PROYECTO.PDF
    +-  ENTREGA1.PDF

Evaluación

   10%: Entrega 1 realizada a tiempo
   40%: Claridad
   25%: reproducibilidad
   25%: compleción

Referencias

Guías sobre Deep Learning

  • Aggarwal, Charu C. Neural networks and deep learning. Springer 10 (2018): 978-3.

  • Calin, Ovidiu. Deep Learning Architectures. Springer International Publishing, 2020.

  • Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1). Cambridge: MIT Press website pdf

Con un foco especial en alguno de los módulos

  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.

  • Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image caption generator. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3156-3164).

  • Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., & Saenko, K. (2015). Sequence to sequence-video to text. In Proceedings of the IEEE international conference on computer vision (pp. 4534-4542).

  • Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems (pp. 3104-3112).

  • Pradeep Pujari, Md. Rezaul Karim, Mohit Sewak (2017) , Practical Convolutional Neural Networks, O’Reilly,

Generales de machine learning

  • Hastie, Tibshirani, Friedman, The Elements of Statistical Learning, Springer-Verlag website pdf

  • Haykin, S. S., Haykin, S. S., Haykin, S. S., & Haykin, S. S. (2009). Neural networks and learning machines (Vol. 3). Upper Saddle River, NJ, USA:: Pearson.

Materiales complementarios