# init repo notebook
!git clone https://github.com/rramosp/ppdl.git > /dev/null 2> /dev/null
!mv -n ppdl/content/init.py ppdl/content/local . 2> /dev/null
!pip install -r ppdl/content/requirements.txt > /dev/null
Symbolic computing for ML#
import sys
import sympy as sy
import numpy as np
import pandas as pd
Using sympy computer algebra system (CAS)#
x,y = sy.symbols("x y")
z = x**2 + x*sy.cos(y)
z
we can evaluate the expresion by providing concrete values for the symbolic variables
z.subs({x: 2, y: sy.pi/4})
and obtain numerical approximations of these values
sy.N(z.subs({x: 2, y: sy.pi/4}))
a derivative can be seen as a function that inputs and expression and outputs another expression
observe how we compute \(\frac{\partial z}{\partial x}\) and \(\frac{\partial z}{\partial y}\)
z.diff(x)
z.diff(y)
r = z.diff(x).subs({x: 2, y: sy.pi/4})
r, sy.N(r)
(sqrt(2)/2 + 4, 4.70710678118655)
r = z.diff(y).subs({x: 2, y: sy.pi/4})
r, sy.N(r)
(-sqrt(2), -1.41421356237310)
EXERCISE: draw the computational graph of \(x^2+x\cos(x)\) and show how to differentiate mechanically using the graphs.
More things you can do with sympy (and almost any CAS)
sy.expand((x+2)**2)
sy.factor( x**2-2*x-8 )
sy.solve( x**2 + 2*x - 8, x)
[-4, 2]
a = sy.symbols("alpha")
sy.solve( a*x**2 + 2*x - 8, x)
[(sqrt(8*alpha + 1) - 1)/alpha, -(sqrt(8*alpha + 1) + 1)/alpha]
differential equations, solving \(\frac{df}{dt}=f(t)+t\)
t, C1 = sy.symbols("t C1")
f = sy.symbols("f", cls=sy.Function)
dydt = f(t)+t
eq = dydt-sy.diff(f(t),t)
yt = sy.dsolve(eq, f(t))
yt
systems of equations
sy.solve ([x**2+y, 3*y-x])
[{x: -1/3, y: -1/9}, {x: 0, y: 0}]
Sympy to Python and Numpy#
f = (sy.sin(x) + x**2)/2
f
f.subs({x:10})
sy.N(f.subs({x:10}))
f1 = sy.lambdify(x, f)
f1(10)
49.72798944455531
and a vectorized version
f2 = sy.lambdify(x, f, "numpy")
f2(10)
49.72798944455531
f2(np.array([10,2,3]))
array([49.72798944, 2.45464871, 4.57056 ])
the lambdified version is faster, and the vectorized one is even faster
%timeit sy.N(f.subs({x:10}))
94.5 µs ± 1.04 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
%timeit f1(10)
874 ns ± 4.61 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
%timeit [f1(i) for i in range(1000)]
927 µs ± 24.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit f2(np.arange(1000))
17.3 µs ± 193 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
Using sympy to obtain the gradient for Linear Regression.#
d = pd.read_csv("local/data/trilotropicos.csv")
y = d.densidad_escamas.values
X = np.r_[[[1]*len(d), d.longitud.values]].T
t0,t1 = sy.symbols("theta_0 theta_1")
t0,t1
(theta_0, theta_1)
we first obtain the cost expression for a few summation terms, so that we can print it out and understand it
expr = 0
for i in range(10):
expr += (X[i,0]*t0+X[i,1]*t1-y[i])**2
expr = expr/len(X)
expr
find X[0] and y[0] in the expression above, beware that you might get simplifications and reordering of the expression by sympy
y[:10]
array([ 8.81002719, 12.98047638, 9.50777126, 7.81259333, 8.81891411,
8.07371798, 9.54390404, 7.15116822, 7.15939183, 7.50229833])
we can now simplify the expression, using sympy mechanics
expr = expr.simplify()
expr
we now build the full expression
def build_logisitic_regression_cost_expression(X,y):
expr_cost = 0
for i in range(len(X)):
expr_cost += (X[i,0]*t0+X[i,1]*t1-y[i])**2/len(X)
expr_cost = expr_cost.simplify()
return expr_cost
y = d.densidad_escamas.values
X = np.r_[[[1]*len(d), d.longitud.values]].T
expr_cost = build_logisitic_regression_cost_expression(X,y)
expr_cost
%timeit build_logisitic_regression_cost_expression(X,y)
2.27 s ± 10.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
obtain derivatives symbolically
expr_dt0 = expr_cost.diff(t0)
expr_dt1 = expr_cost.diff(t1)
expr_dt0
expr_dt1
and now we can minimize
s_cost = sy.lambdify([[t0,t1]], expr_cost, "numpy")
d0 = sy.lambdify([[t0,t1]], expr_dt0, "numpy")
d1 = sy.lambdify([[t0,t1]], expr_dt1, "numpy")
s_grad = lambda x: np.array([d0(x), d1(x)])
and now we can minimize
r = minimize(s_cost, [0,0], jac=s_grad, method="BFGS")
r
fun: 2.7447662570799594
hess_inv: array([[ 5.57425906, -1.09086733],
[-1.09086733, 0.23434848]])
jac: array([-1.73778293e-07, -9.26928138e-07])
message: 'Optimization terminated successfully.'
nfev: 10
nit: 9
njev: 10
status: 0
success: True
x: array([12.6899981, -0.7180591])
observe that hand derived functions and the ones obtained by sympy evaluate to the same values
t0 = np.random.random()*5+10
t1 = np.random.random()*4-3
t = np.r_[t0,t1]
print ("theta:",t)
print ("cost analytic:", n_cost(t))
print ("cost symbolic:", s_cost(t))
print ("gradient analytic:", n_grad(t))
print ("gradient symbolic:", s_grad(t))
theta: [14.75607897 -2.17279455]
cost analytic: 29.327470736096537
cost symbolic: 29.327470736096018
gradient analytic: [ -9.39673767 -49.89211477]
gradient symbolic: [ -9.39673767 -49.89211477]