# 3.2 - TF symbolic engine¶

!wget -nc --no-cache -O init.py -q https://raw.githubusercontent.com/rramosp/2021.deeplearning/main/content/init.py

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline

from sklearn.datasets import *
from local.lib import mlutils
from IPython.display import Image
tf.__version__

'2.2.0'


## Tensorflow Dev Summit¶

the following images are screenshots of the publicly available material from conferences at the TensorFLow Dev Summit

Image("local/imgs/tfCycle.png")

Image("local/imgs/tfTrainingWorkflow.png")

Image("local/imgs/tfAPIs.png")


## TF is a symbolic computing + optimization library for machine learning problems¶

ML expressions involve:

• variables representing data as n-dimensional objects

• variables representing parameters as n-dimensional objects

• mostly matrix operations (multiplications, convolutions, etc.)

• some non linear operations (activation functions)

Recall that in sympy we FIRST define expressions (a computational graph) and THEN we evaluate them feed concrete values.

Tensorflow INTEGRATES both aspects so that building computational graphs LOOKS LIKE writing regular Pytohn code as must as possible.

• a tf.Variable represents a symbolic variable, that contains a value

See:

x = tf.Variable(initial_value=[7], name="x", dtype=tf.float32)
y = tf.Variable(initial_value=[9], name="y", dtype=tf.float32)
f = x**2+y**3
f

<tf.Tensor: shape=(1,), dtype=float32, numpy=array([778.], dtype=float32)>


f is SYMBOLIC EXPRESSION (a Tensor in TF terms) that also contains a value attached to it.

for which TF can obtain gradients automatically. This might seem a rather akward way of obtaining the gradient (with GradientTape). The goal is that you write code as in Python and TF takes care of building the computational graph with it.

with tf.GradientTape(persistent=True) as t:
f = x**2 + y**3


tf.Tensor([14.], shape=(1,), dtype=float32) tf.Tensor([243.], shape=(1,), dtype=float32)

print (t.gradient(f, [x,y]))

[<tf.Tensor: shape=(1,), dtype=float32, numpy=array([14.], dtype=float32)>, <tf.Tensor: shape=(1,), dtype=float32, numpy=array([243.], dtype=float32)>]


usually expressions are built within functions decorated with @tf.function for performance

@tf.function
def myf(x,y):
return x**2 + y**3

with tf.GradientTape(persistent=True) as t:
f = myf(x,y)


tf.Tensor([14.], shape=(1,), dtype=float32) tf.Tensor([243.], shape=(1,), dtype=float32)

!rm -rf logs
mlutils.make_graph(myf, x, y, logdir="logs")

<tensorflow.python.eager.def_function.Function object at 0x7f82b0317850>

%tensorboard --logdir logs


## Tensors¶

in Tensorflow the notion of a Tensor is just a symbolic multidimensional array. Although, this is a recent simplified version of what always has been known as a tensor in differential geometry (see https://bjlkeng.github.io/posts/tensors-tensors-tensors/).

Observe how Tensorflow naturally deals with multidimensional symbolic variables (Tensors)

$\frac{1}{m} \sum (X\theta - y)^2$
n = 3
X = tf.Variable(initial_value=[[2, 6], [3, 1], [4, 5]], name="X", dtype=tf.float32)
w = tf.Variable(initial_value=[[-2],[1]], name="w", dtype=tf.float32)
y = tf.Variable(initial_value=[[8],[2],[3]], name="y", dtype=tf.float32)

f = tf.reduce_mean((tf.matmul(X,w)-y)**2)

g

<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[-38.      ],
[-48.666668]], dtype=float32)>


But a tf.Tensor is always a symbolic variable. In order to reconcile symbolic and execution worlds, Tensorflow attaches a value to each symbolic variable, and carries it forward when making derivations.

• X, y and w are Tensors that we define with a specific value

• g is a Tensor derived from X, y and w that have ALSO been evaluated with the corresponding values.

g

<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[-38.      ],
[-48.666668]], dtype=float32)>

g.numpy()

array([[-38.      ],
[-48.666668]], dtype=float32)


## Implementing linear regresion in TF¶

d = pd.read_csv("local/data/trilotropicos.csv")
X = np.r_[[d.longitud.values]].T.astype(np.float32)

print(X.shape, y.shape)
plt.xlabel(d.columns[0])
plt.ylabel(d.columns[1]);

(150, 1) (150,)

from sklearn.linear_model import LinearRegression

lr = LinearRegression()
lr.fit(X,y)
lr.coef_, lr.intercept_

(array([-0.71805906], dtype=float32), 12.689999)


## Version 1: raw low level with gradient descent¶

• beware of typing. tensorflow is very sensitive to numeric data types (tf.float32, tf.float64, etc.) Default types in numpy and tensorflow might not always be the same

from progressbar import progressbar as pbar

epochs = 4000
learning_rate = 0.01

# symbolic variables
w = tf.Variable(np.random.normal(size=(X.shape[-1], 1), scale=.6), dtype=tf.float32)
b = tf.Variable(np.random.normal(size=(1,), scale=.6), dtype=tf.float32)
h = []

#optimization loop
for epoch in pbar(range(epochs)):
preds = tf.matmul(X,w)+b
loss = tf.reduce_mean( (preds-y.reshape(-1,1))**2)

gw, gb = t.gradient(loss, [w, b])

w.assign_sub(learning_rate * gw)
b.assign_sub(learning_rate * gb)

h.append([gw.numpy()[0][0], gb.numpy()[0], w.numpy()[0][0], b.numpy()[0], loss.numpy()])
h = np.r_[h]
print (b.numpy(), w.numpy())

100% (4000 of 4000) |####################| Elapsed Time: 0:00:03 Time:  0:00:03

[12.677747] [[-0.715652]]

rmse = tf.reduce_mean((tf.matmul(X,w)+b-y)**2).numpy()
plt.figure(figsize=(15,2));
plt.plot(h[:,-1]); plt.xlabel("step number"); plt.ylabel("loss"); plt.grid();
plt.title("RMSE %.3f"%rmse);
plt.ylim(0,50)

(0.0, 50.0)


## Version 2: using tf.function to speed up¶

epochs = 4000

# initialize weights
w.assign(np.random.normal(size=(X.shape[-1],1)).astype(np.float32)*.6)
b.assign(np.random.normal(size=(1,)).astype(np.float32))

@tf.function
preds = tf.matmul(X,w)+b
loss = tf.reduce_mean( (preds-y)**2)

gw, gb = t.gradient(loss, [w, b])
return gw, gb, loss

#optimization loop
h = []
for epoch in pbar(range(epochs)):

gw, gb, loss = get_gradient(w, b, X, y.reshape(-1,1))

w.assign_sub(learning_rate * gw)
b.assign_sub(learning_rate * gb)

h.append([gw.numpy()[0][0], gb.numpy()[0], w.numpy()[0][0], b.numpy()[0], loss.numpy()])
h = np.r_[h]

print (b.numpy(), w.numpy())

100% (4000 of 4000) |####################| Elapsed Time: 0:00:01 Time:  0:00:01

[12.678027] [[-0.71570694]]

predictions = tf.matmul(X,w)+b

rmse = tf.reduce_mean((predictions-y)**2).numpy()
plt.figure(figsize=(15,2));
plt.plot(h[:,-1]); plt.xlabel("step number"); plt.ylabel("loss"); plt.grid();
plt.title("RMSE %.3f"%rmse);
plt.ylim(0,50)

(0.0, 50.0)


## Version 3: using batches with random shuffling (stochastic gradient descent)¶

notice we tune the number of epochs as the number of weights updates increases

#optimization loop
batch_size = 16
epochs = 400

# initialize weights
w.assign(np.random.normal(size=(X.shape[-1],1))*.6)
b.assign(np.random.normal(size=(1,)))

h = []

for epoch in pbar(range(epochs)):

idxs = np.random.permutation(len(X))

for step in range(len(X)//batch_size+((len(X)%batch_size)!=0)):

X_batch = X[idxs][step*batch_size:(step+1)*batch_size]
y_batch = y[idxs][step*batch_size:(step+1)*batch_size]

gw, gb, loss = get_gradient(w, b, X_batch, y_batch.reshape(-1,1))

w.assign_sub(learning_rate * gw)
b.assign_sub(learning_rate * gb)

h.append([gw.numpy()[0][0], gb.numpy()[0], w.numpy()[0][0], b.numpy()[0], loss.numpy()])
h = np.r_[h]
print (b.numpy(), w.numpy())

100% (400 of 400) |######################| Elapsed Time: 0:00:01 Time:  0:00:01

[12.652696] [[-0.7733341]]

predictions = tf.matmul(X,w)+b

rmse = tf.reduce_mean((predictions-y)**2).numpy()
plt.figure(figsize=(15,2));
plt.plot(h[:,-1]); plt.xlabel("step number"); plt.ylabel("loss"); plt.grid();
plt.title("RMSE %.3f"%rmse);
plt.ylim(0,50)

(0.0, 50.0)


## Version 4: packing up with Keras class API and custom SGD¶

observe:

• thebuild method that is called by Keras whenever input_shape is known

• we use add_weight so that our model weights are known to the Keras model framework (trainable_variables, get_weights, etc.)

see here

class LinearRegressionModel4(tf.keras.Model):

def build(self, input_shape):
trainable=True, dtype=tf.float32)

trainable=True, dtype=tf.float32)

def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b

@tf.function
loss = tf.reduce_mean( (self(X)-y)**2)

gw, gb = t.gradient(loss, [self.w, self.b])
return gw, gb, loss

def fit(self, X,y, epochs, batch_size=16, learning_rate=0.01):
y = y.reshape(-1,1)
self.h=[]
for epoch in pbar(range(epochs)):
idxs = np.random.permutation(len(X))
for step in range(len(X)//batch_size+((len(X)%batch_size)!=0)):
X_batch = X[idxs][step*batch_size:(step+1)*batch_size]
y_batch = y[idxs][step*batch_size:(step+1)*batch_size]

self.w.assign_sub(learning_rate * gw)
self.b.assign_sub(learning_rate * gb)
self.h.append([gw.numpy()[0][0], gb.numpy()[0], w.numpy()[0][0], b.numpy()[0], loss.numpy()])
self.h = np.r_[self.h]

model = LinearRegressionModel4()


observe that we can use the object directly on data to get predictions

model(X[:2])

<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[-0.04066426],
[-0.04316743]], dtype=float32)>


or with the .predict method

model.predict(X[:2])

array([[-0.04066426],
[-0.04316743]], dtype=float32)

model.trainable_variables

[<tf.Variable 'linear_regression_model4/Variable:0' shape=(1, 1) dtype=float32, numpy=array([[0.00150557]], dtype=float32)>,
<tf.Variable 'linear_regression_model4/Variable:0' shape=(1,) dtype=float32, numpy=array([-0.0464113], dtype=float32)>]

model.get_weights()

[array([[0.00150557]], dtype=float32), array([-0.0464113], dtype=float32)]


and fit the model

model.fit(X, y, epochs=400, batch_size=16)

100% (400 of 400) |######################| Elapsed Time: 0:00:02 Time:  0:00:02

model.b.numpy(), model.w.numpy()

(array([12.6924925], dtype=float32), array([[-0.5818763]], dtype=float32))

predictions = model(X)

rmse = tf.reduce_mean((predictions-y)**2).numpy()
plt.figure(figsize=(15,2));
plt.plot(model.h[:,-1]); plt.xlabel("step number"); plt.ylabel("loss"); plt.grid();
plt.title("RMSE %.3f"%rmse);
plt.ylim(0,50)

(0.0, 50.0)


## Version 5: Sequential Keras model with standard loop¶

from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense

def get_model5():
model = Sequential()
model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01),
metrics=["mean_absolute_error"],
loss="mse")
# equivalent forms for loss
#                  loss = lambda y_true, y_pred: tf.reduce_mean((y_true-y_pred)**2))
#                  loss="mean_squared_error")
#                  loss=tf.keras.metrics.mean_squared_error)
return model

from sklearn.model_selection import train_test_split
X_train, X_val, y_train, y_val = train_test_split(X,y.reshape(-1,1), test_size=0.2)
X_train.shape, X_val.shape, y_train.shape, y_val.shape

((120, 1), (30, 1), (120, 1), (30, 1))

!rm -rf logs
model = get_model5()

tb_callback = tf.keras.callbacks.TensorBoard('./logs', update_freq=1)
model.fit(X_train,y_train, epochs=100, batch_size=5, verbose=0,
callbacks=[tb_callback], validation_data=(X_val, y_val))

model.weights

[<tf.Variable 'dense_12/kernel:0' shape=(1, 1) dtype=float32, numpy=array([[-0.5444805]], dtype=float32)>,
<tf.Variable 'dense_12/bias:0' shape=(1,) dtype=float32, numpy=array([11.90973], dtype=float32)>]


history is now logged only per epoch

model.history.history.keys()

dict_keys(['loss', 'mean_absolute_error', 'val_loss', 'val_mean_absolute_error'])

predictions = model(X)
rmse = np.mean((predictions-y)**2)

plt.figure(figsize=(15,2));
plt.plot(model.history.history["val_loss"], label="val");
plt.plot(model.history.history["loss"], label="train");
plt.xlabel("step number"); plt.ylabel("loss"); plt.grid();
plt.title("RMSE %.3f"%rmse); plt.legend();

mae = np.mean(np.abs(predictions-y))

plt.figure(figsize=(15,2));
plt.plot(model.history.history["val_mean_absolute_error"], label="val");
plt.plot(model.history.history["mean_absolute_error"], label="train");
plt.xlabel("step number"); plt.ylabel("MAE"); plt.grid();
plt.title("MAE %.3f"%mae); plt.legend();

%tensorboard --logdir logs


## Version 6: Custom model with Keras class API and standard loop¶

class LinearRegressionModel6(tf.keras.Model):

def build(self, input_shape):
initializer='random_normal',
trainable=True, dtype=np.float32)

initializer='random_normal',
trainable=True, dtype=np.float32)

def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b

model = LinearRegressionModel6()

!rm -rf logs
model = LinearRegressionModel6()
model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.02),
loss="mse", metrics=['mean_absolute_error'])

tb_callback = tf.keras.callbacks.TensorBoard('./logs', update_freq=1)

model.fit(X_train,y_train, epochs=100, batch_size=5, callbacks=[tb_callback],
verbose=0, validation_data=(X_val, y_val))

<tensorflow.python.keras.callbacks.History at 0x7fa1e8358f70>

model.b.numpy(), model.w.numpy()[0]

(array([12.178291], dtype=float32), array([-0.3399362], dtype=float32))

predictions = model(X)
rmse = np.mean((predictions-y)**2)

plt.figure(figsize=(15,2));
plt.plot(model.history.history["loss"], label="train");
plt.plot(model.history.history["val_loss"], label="val");
plt.xlabel("step number"); plt.ylabel("loss"); plt.grid();
plt.title("RMSE %.3f"%rmse); plt.legend();


## Version 7: Using train_step$$\rightarrow$$ control loss and gradients on a custom model.¶

class LinearRegressionModel7(tf.keras.Model):

def build(self, input_shape):
initializer='random_normal',
trainable=True, dtype=np.float32)

initializer='random_normal',
trainable=True, dtype=np.float32)

self.loss_fn = tf.keras.metrics.MeanSquaredError()

def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b

def test_step(self, data):
# here we implement loss by hand
return {'loss': tf.reduce_mean((self(X)-y)**2)  }

@tf.function
def train_step(self, data):
X,y = data
loss_fn = lambda y_true, y_preds: tf.reduce_mean((y_true-y_preds)**2)
# we use tf.keras loss function (equivalent to test_step)
loss_fn = tf.keras.metrics.mean_squared_error
loss = tf.reduce_mean(loss_fn(y, self(X)))

return {'loss': loss}

model = LinearRegressionModel7()
model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.02))
model.fit(X_train,y_train, epochs=400, batch_size=5, verbose=0, validation_data=(X_val, y_val))

[i.numpy() for i in model.trainable_variables]

[array([[-0.62764317]], dtype=float32), array([12.133042], dtype=float32)]

predictions = model(X)
rmse = np.mean((predictions-y)**2)

plt.figure(figsize=(15,2));
plt.plot(model.history.history["loss"], label="train");
plt.plot(model.history.history["val_loss"], label="val");
plt.xlabel("step number"); plt.ylabel("loss"); plt.grid();
plt.title("RMSE %.3f"%rmse); plt.legend();


## Version 8: Using train_step$$\rightarrow$$ control loss and gradients on a standard model.¶

observe that:

• we use a standard Dense layer,

• we use a custom loss function and optimizer.apply_gradients

class CustomModel(tf.keras.Model):

def test_step(self, data):
return {'loss': tf.reduce_mean((self(X)-y)**2)}

@tf.function
def train_step(self, data):
X,y = data

y_pred = self(X, training=True)
loss_value = tf.reduce_mean((y_pred-y)**2)

return {'loss': loss_value}

from tensorflow.keras.layers import Dense, Input

def get_model8():

inputs = tf.keras.layers.Input(shape=(1))
outputs = tf.keras.layers.Dense(1, activation="linear")(inputs)

model = CustomModel(inputs, outputs)

model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.02))
return model


our custom loop (for any model !!!)

model = get_model8()
model.summary()

Model: "custom_model_3"
_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_4 (InputLayer)         [(None, 1)]               0
_________________________________________________________________
dense_15 (Dense)             (None, 1)                 2
=================================================================
Total params: 2
Trainable params: 2
Non-trainable params: 0
_________________________________________________________________

model.weights

[<tf.Variable 'dense_15/kernel:0' shape=(1, 1) dtype=float32, numpy=array([[0.79911673]], dtype=float32)>,
<tf.Variable 'dense_15/bias:0' shape=(1,) dtype=float32, numpy=array([0.], dtype=float32)>]

model.trainable_variables

[<tf.Variable 'dense_15/kernel:0' shape=(1, 1) dtype=float32, numpy=array([[0.79911673]], dtype=float32)>,
<tf.Variable 'dense_15/bias:0' shape=(1,) dtype=float32, numpy=array([0.], dtype=float32)>]

model.fit(X_train,y_train.reshape(-1,1), epochs=400, batch_size=5, verbose=0, validation_data=(X_val, y_val))

<tensorflow.python.keras.callbacks.History at 0x7fa1b5c35040>

model.trainable_variables

[<tf.Variable 'dense_15/kernel:0' shape=(1, 1) dtype=float32, numpy=array([[-0.4444475]], dtype=float32)>,
<tf.Variable 'dense_15/bias:0' shape=(1,) dtype=float32, numpy=array([11.331306], dtype=float32)>]

predictions = model(X)
rmse = np.mean((predictions-y)**2)

plt.figure(figsize=(15,2));
plt.plot(model.history.history["loss"], label="train");
plt.plot(model.history.history["val_loss"], label="val");
plt.xlabel("step number"); plt.ylabel("loss"); plt.grid();
plt.title("RMSE %.3f"%rmse); plt.legend();


## Version 9: using train_on_batch$$\rightarrow$$ control data¶

epochs = 400
batch_size = 5

model = get_model8()
h = []
for epoch in pbar(range(epochs)):
idxs = np.random.permutation(len(X))
for step in range(len(X)//batch_size+((len(X)%batch_size)!=0)):
X_batch = X[idxs][step*batch_size:(step+1)*batch_size]
y_batch = y[idxs][step*batch_size:(step+1)*batch_size]
model.train_on_batch(X_batch, y_batch)
h.append(model.test_step([X_batch, y_batch])['loss'])

100% (400 of 400) |######################| Elapsed Time: 0:00:24 Time:  0:00:24

model.trainable_variables

[<tf.Variable 'dense_22/kernel:0' shape=(1, 1) dtype=float32, numpy=array([[0.14408377]], dtype=float32)>,
<tf.Variable 'dense_22/bias:0' shape=(1,) dtype=float32, numpy=array([10.004782], dtype=float32)>]

predictions = model(X)

rmse = tf.reduce_mean((predictions-y)**2).numpy()
plt.figure(figsize=(15,2));
plt.plot(h); plt.xlabel("step number"); plt.ylabel("loss"); plt.grid();
plt.title("RMSE %.3f"%rmse);