05.01 - TIME SERIES PREDICTIONS
Contents
05.01 - TIME SERIES PREDICTIONS¶
!wget --no-cache -O init.py -q https://raw.githubusercontent.com/rramosp/ai4eng.v1/main/content/init.py
import init; init.init(force_download=False); init.get_weblink()
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import local.lib.timeseries as ts
%matplotlib inline
The data¶
d = pd.read_csv("local/data/eurcop.csv")
d.index = pd.to_datetime(d.Date)
del(d["Date"])
d.head()
Rate | High (est) | Low (est) | |
---|---|---|---|
Date | |||
1999-09-06 | 2068.55 | 0.0 | 0.0 |
1999-09-07 | 2078.17 | 2103.0 | 2053.7 |
1999-09-08 | 2091.05 | 0.0 | 0.0 |
1999-09-09 | 2093.84 | 2118.6 | 2069.4 |
1999-09-10 | 2087.55 | 0.0 | 0.0 |
d.plot(figsize=(15,3))
<matplotlib.axes._subplots.AxesSubplot at 0x7fd05ad8cf50>
d[["Rate"]].plot(figsize=(15,3))
<matplotlib.axes._subplots.AxesSubplot at 0x7fd05853d290>
d = d[["Rate"]]
d.head(10)
Rate | |
---|---|
Date | |
1999-09-06 | 2068.55 |
1999-09-07 | 2078.17 |
1999-09-08 | 2091.05 |
1999-09-09 | 2093.84 |
1999-09-10 | 2087.55 |
1999-09-13 | 2062.96 |
1999-09-14 | 2047.08 |
1999-09-15 | 2040.93 |
1999-09-16 | 2047.17 |
1999-09-17 | 2060.87 |
A predictive model¶
First create a time series dataset with look back¶
dt = ts.timeseries_as_many2one(d, columns=["Rate"], nb_timesteps_in=4, timelag=0)
dt.head()
Rate_0 | Rate_1 | Rate_2 | Rate_3 | Rate | |
---|---|---|---|---|---|
Date | |||||
1999-09-10 | 2068.55 | 2078.17 | 2091.05 | 2093.84 | 2087.55 |
1999-09-13 | 2078.17 | 2091.05 | 2093.84 | 2087.55 | 2062.96 |
1999-09-14 | 2091.05 | 2093.84 | 2087.55 | 2062.96 | 2047.08 |
1999-09-15 | 2093.84 | 2087.55 | 2062.96 | 2047.08 | 2040.93 |
1999-09-16 | 2087.55 | 2062.96 | 2047.08 | 2040.93 | 2047.17 |
Split dataset for trian and for test¶
trds = dt[:"2008"]
tsds = dt["2009":]
print (dt.shape, trds.shape, tsds.shape)
plt.figure(figsize=(15,3))
plt.plot(trds.index.values, trds.Rate.values, color="black", lw=2, label="train", alpha=.5)
plt.plot(tsds.index.values, tsds.Rate.values, color="red", lw=2, label="test", alpha=.5)
plt.grid();
plt.legend();
(5040, 5) (2691, 5) (2349, 5)
Create X
and y
matrices for train and test¶
Xtr, ytr = trds[[i for i in trds.columns if i!="Rate"]].values, trds.Rate.values
Xts, yts = tsds[[i for i in tsds.columns if i!="Rate"]].values, tsds.Rate.values
trds[:5]
Rate_0 | Rate_1 | Rate_2 | Rate_3 | Rate | |
---|---|---|---|---|---|
Date | |||||
1999-09-10 | 2068.55 | 2078.17 | 2091.05 | 2093.84 | 2087.55 |
1999-09-13 | 2078.17 | 2091.05 | 2093.84 | 2087.55 | 2062.96 |
1999-09-14 | 2091.05 | 2093.84 | 2087.55 | 2062.96 | 2047.08 |
1999-09-15 | 2093.84 | 2087.55 | 2062.96 | 2047.08 | 2040.93 |
1999-09-16 | 2087.55 | 2062.96 | 2047.08 | 2040.93 | 2047.17 |
print (Xtr[:10])
print (ytr[:10])
[[2068.55 2078.17 2091.05 2093.84]
[2078.17 2091.05 2093.84 2087.55]
[2091.05 2093.84 2087.55 2062.96]
[2093.84 2087.55 2062.96 2047.08]
[2087.55 2062.96 2047.08 2040.93]
[2062.96 2047.08 2040.93 2047.17]
[2047.08 2040.93 2047.17 2060.87]
[2040.93 2047.17 2060.87 2065.02]
[2047.17 2060.87 2065.02 2061.61]
[2060.87 2065.02 2061.61 2080.33]]
[2087.55 2062.96 2047.08 2040.93 2047.17 2060.87 2065.02 2061.61 2080.33
2085.85]
tsds[:5]
Rate_0 | Rate_1 | Rate_2 | Rate_3 | Rate | |
---|---|---|---|---|---|
Date | |||||
2009-01-01 | 3079.180176 | 3079.180176 | 3140.934326 | 3193.720215 | 3197.497070 |
2009-01-02 | 3079.180176 | 3140.934326 | 3193.720215 | 3197.497070 | 3093.394775 |
2009-01-04 | 3140.934326 | 3193.720215 | 3197.497070 | 3093.394775 | 3029.256836 |
2009-01-05 | 3193.720215 | 3197.497070 | 3093.394775 | 3029.256836 | 3029.256836 |
2009-01-06 | 3197.497070 | 3093.394775 | 3029.256836 | 3029.256836 | 2914.927246 |
print (Xts[:10])
print (yts[:20])
[[3079.18017578 3079.18017578 3140.93432617 3193.72021484]
[3079.18017578 3140.93432617 3193.72021484 3197.49707031]
[3140.93432617 3193.72021484 3197.49707031 3093.39477539]
[3193.72021484 3197.49707031 3093.39477539 3029.25683594]
[3197.49707031 3093.39477539 3029.25683594 3029.25683594]
[3093.39477539 3029.25683594 3029.25683594 2914.92724609]
[3029.25683594 3029.25683594 2914.92724609 2969.78344727]
[3029.25683594 2914.92724609 2969.78344727 2954.19067383]
[2914.92724609 2969.78344727 2954.19067383 2983.23510742]
[2969.78344727 2954.19067383 2983.23510742 2923.44677734]]
[3197.49707031 3093.39477539 3029.25683594 3029.25683594 2914.92724609
2969.78344727 2954.19067383 2983.23510742 2923.44677734 2923.44677734
2913.42114258 2897.17138672 2885.69604492 2940.19921875 2941.0378418
2941.0378418 2878.10864258 2848.63378906 2873.06689453 2828.56445312]
convert target into classification task for TREND PREDICTION (1 up, 0 down)¶
yts = (yts>Xts[:,-1]).astype(int)
ytr = (ytr>Xtr[:,-1]).astype(int)
print (ytr[:20])
print (yts[:20])
[0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0]
[1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0]
inspect target class distributions¶
print ("1's in train %.2f%s"%(np.mean(ytr)*100, "%"))
print ("1's in test %.2f%s"%(np.mean(yts)*100, "%"))
1's in train 45.04%
1's in test 41.72%
train a predictive model¶
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
estimator = RandomForestClassifier(n_estimators=5, max_depth=30)
#estimator = DecisionTreeClassifier(max_depth=2)
#estimator = LogisticRegression()
#estimator = Pipeline((("pca", PCA(n_components=2)), ("estimator", estimator)))
estimator.fit(Xtr,ytr);
get predictive accuracy in train and test¶
print ("train accuracy %.2f"%estimator.score(Xtr,ytr))
print ("test accuracy %.2f"%estimator.score(Xts,yts))
train accuracy 0.92
test accuracy 0.52
inspect confusion matrix¶
from sklearn.metrics import confusion_matrix
import seaborn as sns
cm = confusion_matrix(yts, estimator.predict(Xts))
sns.heatmap(cm,annot=True,cbar=False, fmt="d")
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.title('Confusion Matrix')
Text(0.5, 1, 'Confusion Matrix')
A strategy¶
if model predicts 1 (price up) we buy 10 EUR today and sell them tomorrow
if model predicts 0 (price down) we sell 10 EUR today and buy them tomorrow
def trade(d, date_close, op, qty):
assert op in ["buy", "sell"]
assert qty>=0
r = (d.loc[:date_close].iloc[-2].Rate-d.loc[date_close].Rate)*qty
if op=="buy":
r = -r
return r
example: a buy operation on 2011-01-03 closed (with a sell operation) on 2011-01-04
trade(tsds, "2011-01-04", "buy", 100)
701.0498039999675
trade(tsds, "2011-01-05", "buy", 100)
-77.17285099997753
tsds["2011-01-02":].iloc[:5]
Rate_0 | Rate_1 | Rate_2 | Rate_3 | Rate | |
---|---|---|---|---|---|
Date | |||||
2011-01-02 | 2528.971680 | 2528.971680 | 2618.146240 | 2567.137939 | 2520.103760 |
2011-01-03 | 2528.971680 | 2618.146240 | 2567.137939 | 2520.103760 | 2520.103760 |
2011-01-04 | 2618.146240 | 2567.137939 | 2520.103760 | 2520.103760 | 2527.114258 |
2011-01-05 | 2567.137939 | 2520.103760 | 2520.103760 | 2527.114258 | 2526.342529 |
2011-01-06 | 2520.103760 | 2520.103760 | 2527.114258 | 2526.342529 | 2478.751709 |
yts
array([1, 0, 0, ..., 0, 0, 1])
def compute_pnl(d, y, predictions, qty=10):
pnl = []
for date,prediction in zip(d.index[1:], predictions[1:]):
pnl.append(trade(d, date, "sell" if prediction==0 else "buy", qty))
pnl = pd.DataFrame(np.r_[[pnl]].T, index=d.index[1:], columns=["pnl"])
pnl["prediction"]=predictions[1:]
pnl["y"]=y[1:]
return pnl
preds = estimator.predict(Xts)
pnl = compute_pnl(tsds, yts, preds)
pnl.pnl.plot()
plt.title("TOTAL PNL %.2f COP"%pnl.pnl.sum())
plt.ylabel("PNL")
plt.grid();
plt.ylim(-5000,5000);
def plot_pnlhist(pnl_series, label=""):
k = pnl_series.values
total = np.sum(k);
k = k[np.abs(k)<50000]
plt.hist(k, bins=30);
plt.title("PNL for %s, total %.2f COP"%(label, total))
plt.figure(figsize=(12,8))
plt.subplot(221); plot_pnlhist(pnl[pnl.y==1].pnl, "REAL = 1 (up)"); plt.grid();
plt.subplot(222); plot_pnlhist(pnl[pnl.y==0].pnl, "REAL = 0 (down)"); plt.grid();
plt.subplot(223); plot_pnlhist(pnl[preds[1:]==1].pnl, "PREDS = 1 (up)"); plt.grid();
plt.subplot(224); plot_pnlhist(pnl[preds[1:]==0].pnl, "PREDS = 0 (down)"); plt.grid();